PENGGUNAAN TURUNAN PERTAMA
Penggunaan Turunan Pertama Grafik Fungsi
Salah satu aplikasi atau penggunaan turunan adalah untuk menggambar grafik sebuah fungsi. Adapun langkah menggambar grafik fungsi dengan menggunakan turunan ini sebagai berikut,
1. Carilah turunan pertama dari soal tersebut
2. Carilah titik kritis
3. Tentukan interval dari fungsinya naik/turun
4. Buatlah grafik fungsi dari soal tersebut
TURUNAN PERTAMA
Misalnya y merupakan fungsi dari x atau dapat ditulis juga y=f(x). Turunan dari y terhadap x dinotasikan sebagai berikut:
Perhatikan contoh berikut :
Perhatikan contoh berikut :
TURUNAN KEDUA
Turunan kedua dari y=f(x) terhadap x dinotasikan sebagai berikut
Turunan kedua merupakan turunan yang diperoleh dengan menurunkan kembali turunan pertama. Perhatikan contoh berikut :
Penggunakan untuk turunan kedua ini antara lain untuk :
a. Menentukan gradien garis singgung kurva
Jika diketahui garis g menyinggung kurva y=f(x) pada titik (a,f(a)) sehingga gradien untuk g adalah
Sebagai contoh tentukanlah gradien garis singgung dari kurva y=x²+3x dititik (1,-4) !
Penyelesaian :
Sehingga gradien garis singgung kurva y=x²+3x dititik (1,-4) adalah m=y(1)=2.1+3=5
b. Menentukan apakah interval tersebut naik atau turun
kurva y =f(x) naik jika f ‘ (x) >0 dan kurva y=f(x) turun jika f ‘ (x) <0. Lalu bagaimana cara menentukan f ‘ (x) > 0 atau f ‘ (x) <0 ? kita gunakan garis bilangan dari f ‘ (x). Perhatikan contoh berikut :
Tentukanlah interval naik dan interval turun dari fungsi y=x³+3x²-24x !
Jawab :
y=f(x)=x³+3x²-24x →f ‘ (x)=3x²+6x-24=3(x²+2x-8)=3(x+4)(x-2)
Berdasarkan garis bilangan yang diperoleh diatas :
f ‘ (x) >0 untuk x<-4 dan x>2 yang merupakan interval untuk fungsi naik.
F ‘ (x) <0 untuk -4 < x < 2 yang merupakan interval untuk fungsi turun.
c. Menentukan nilai maksimum dan nilai minimum
Nilai maksimum dan nilai minimum fungsi ini sering disebut juga dengan nilai ekstrim atau nilai stasioner fungsi, yang dapat diperoleh pada f ‘ (x)=0 untuk fungsi y=f(x). Untuk lebih jelasnya perhatikan contoh berikut.
Tentukan nilai ekstrim dari fungsi y=x³-3x²-24x-7 !
Jawab :
y’=3x²-6x-24
nilai ekstrim diperoleh dari y’=o maka
3x²-6x-24 = 0
(x²-2x-8)=0
(x-4)(x+2)=0
x1=4 ; x2=-2
Berdasarkan garis bilangan diatas :
Fungsi maksimum pada x=-2 sehingga nilai balik maksimumnya yaitu :
f(-2)=(-2)³-3(-2)²-24(-2)-7
f(-2)=21
Fungsi minimum pada x=4 sehingga nilai balik minimumnya yaitu :
f(4)=(4)³-3(4)²-24(4)-7
f(4)=-87
Contoh :
Teorema Lokasi Titik Ekstrim
Misalkan daerah asal f adalah selang I yang memuat titik c. Jika f(c) adalah nilai ekstrim, maka c haruslah merupakan titik kritis, yakni c merupakan:
Carilah nilai-nilai maksimum dan minimum dari
Jawab :
Komentar
Posting Komentar