LIMIT FUNGSI

          Pengertian Limit Fungsi

Di dalam matematika, konsep limit digunakan untuk menjelaskan sifat dari suatu fungsi, saat argumen mendekati ke suatu titik, atau tak hingga; atau sifat dari suatu barisan saat indeks mendekati tak hingga. Limit digunakan dalam kalkulus (dan cabang lainnya dari analisis matematika) untuk mencari turunan dan kekontinyuan.

Limit fungsi adalah salah satu konsep mendasar dalam kalkulus dan analisis, tentang kelakuan suatu fungsi mendekati titik masukan tertentu. Suatu fungsi memetakan keluaran f(x) untuk setiap masukan x. Fungsi tersebut memiliki limit L pada titik masukan p bila f(x) “dekat” pada L ketika x dekat pada p.

Teorema Limit Fungsi
menyatakan bahwa suatu fungsi f(x) akan mendekati nilai tertentu jika x mendekati nilai tertentu. Pendekatan ini terbatas antara dua bilangan positif yang sangat kecil yang disebut sebagai epsilon dan delta. Hubungan ke-2 bilangan positif kecil ini terangkum dalam definisi limit.




penggantian niali x oleh a dalam lim f(x) x→a membuat f(x) punya nilai yang tidak terdefinisi, atau f(a) menghasilkan bentuk 0/0, ∞/∞ atau 0.∞. Jika terjadi hal tersebut solusinya ialah bentuk f(x) coba sobat sederhanakan agar nilai limitnya dapat ditenntukan.


Cara Mengerjakan Limit Fungsi yang Tidak Terdefinisi


Adakalanya penggantian niali x oleh a dalam lim f(x) x→a membuat f(x) punya nilai yang tidak terdefinisi, atau f(a) menghasilkan bentuk 0/0, ∞/∞ atau 0.∞. Jika terjadi hal tersebut solusinya adalah bentuk f(x) coba sobat sederhanakan agar nilai limitnya dapat ditenntukan.


Limit Bentuk 0/0

Bentuk 0/0 kemungkinan timbul dalam 




Jika itu bentuk persamaan kuadrat kita bisa coba memfaktorkan atau dengan cara asosiasi dan jangan lupakan ada aturan a2-b2 = (a+b) (a-b). Berikut adalah contohnya :








Bentuk ∞/∞


Bentuk limit  ∞/∞ terjadi pada fungsi suku banyak (polinom) seperti



Contoh Soal :






Jawab :



Berikut rangkuman rumus cepat limit matematika bentuk  ∞/∞




·  Jika m<n maka L = 0

·  Jika m=n maka L = a/p

·  Jika m>n maka L = ∞





Tentukan Limit :


Masukkan x -> 1 maka bentuknya akan mmenjadi (∞-∞). Untuk menghilangkan bentuk ∞-∞ kita sederhanakan bentuk tersebut menjadi


Hitunglah nilai limit fungsi dibawah ini :


Dengan subtitusi langsung ,
diperoleh bentuk tak tentu, maka harus menggunakan cara lain yaitu mengalikan dengan akar sekawan.


























Komentar

Postingan populer dari blog ini

BASIS RUANG DENGAN BARIS, BASIS RUANG DENGAN KOLOM, RANK, NULITAS

LIMIT FUNGSI TAK HINGGA

KONTINUITAS